3.378 \(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx\)

Optimal. Leaf size=70 \[ \frac {F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)} \]

[Out]

(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+(cos(1/2*d*x+1/2*c)^
2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-sin(d*x+c)/d/(a+a*sec(d*x+c))/cos(d*x+c)
^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {4264, 3818, 3787, 3771, 2639, 2641} \[ \frac {F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])),x]

[Out]

EllipticE[(c + d*x)/2, 2]/(a*d) + EllipticF[(c + d*x)/2, 2]/(a*d) - Sin[c + d*x]/(d*Sqrt[Cos[c + d*x]]*(a + a*
Sec[c + d*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3818

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(d^2*Cot[e
+ f*x]*(d*Csc[e + f*x])^(n - 2))/(f*(a + b*Csc[e + f*x])), x] - Dist[d^2/(a*b), Int[(d*Csc[e + f*x])^(n - 2)*(
b*(n - 2) - a*(n - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1]

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx\\ &=-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a}{2}-\frac {1}{2} a \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{a^2}\\ &=-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx}{2 a}\\ &=-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))}+\frac {\int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a}+\frac {\int \sqrt {\cos (c+d x)} \, dx}{2 a}\\ &=\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.11, size = 263, normalized size = 3.76 \[ \frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {2 \left (\sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right )+\csc (c)\right )}{d \sqrt {\cos (c+d x)}}+\frac {2 i \sqrt {2} e^{-i (c+d x)} \left (\left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )-\left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right )+e^{2 i (c+d x)}+1\right ) \sec (c+d x)}{\left (-1+e^{2 i c}\right ) d \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}\right )}{a (\sec (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])),x]

[Out]

(Cos[(c + d*x)/2]^2*(((2*I)*Sqrt[2]*(1 + E^((2*I)*(c + d*x)) + (-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))
]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] - E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*
I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))])*Sec[c + d*x])/(d*E^(I*(c + d*x))*(-1 +
E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) - (2*(Csc[c] + Sec[c/2]*Sec[(c + d*x)/2]*Sin[(d*
x)/2]))/(d*Sqrt[Cos[c + d*x]])))/(a*(1 + Sec[c + d*x]))

________________________________________________________________________________________

fricas [F]  time = 0.69, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {\cos \left (d x + c\right )}}{a \cos \left (d x + c\right )^{2} \sec \left (d x + c\right ) + a \cos \left (d x + c\right )^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral(sqrt(cos(d*x + c))/(a*cos(d*x + c)^2*sec(d*x + c) + a*cos(d*x + c)^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [A]  time = 3.39, size = 200, normalized size = 2.86 \[ \frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x)

[Out]

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*s
in(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^
(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((a*sec(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))),x)

[Out]

int(1/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {1}{\cos ^{\frac {3}{2}}{\left (c + d x \right )} \sec {\left (c + d x \right )} + \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+a*sec(d*x+c)),x)

[Out]

Integral(1/(cos(c + d*x)**(3/2)*sec(c + d*x) + cos(c + d*x)**(3/2)), x)/a

________________________________________________________________________________________